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Introduction 

In certain medical investigations, the occurrence of individual or item failure can 

be attributed to multiple causes or factors that compete for the failure event of 

the subject under study. Competing risks emerge when an individual faces the 

possibility of failing in multiple ways, yet only one of these failure types can 

transpire (1-3). For instance, a person could pass away due to either cancer or a 

heart stroke but not both (even though they might have both ailments prior to 

their demise). Another instance involves a randomized clinical trial comparing 

treatments for lung cancer, where patients may succumb to lung cancer, heart 

disease, or other underlying reasons (4). Traditionally, researchers have been 

primarily concerned with analyzing the lifetime distribution under a specific 

cause of failure, treating all other competing causes as censored data (5). 

However, more recently, advanced models have emerged to assess the lifetimes 

of specific risk factors in the presence of competing risk factors. These models 

leverage datasets containing time-to-event information along with an indicator 

variable that signifies the specific cause of failure for the individual or item under 

observation. It is possible to assume that these distinct failure causes are either 

independent or dependent on each other (6). In many cases, the analysis of 

competing risk data assumes the independence of failure causes. For an in-depth 

exploration of various competing risk models, refer to Crowder and the 

comprehensive work by David and Moeschberger (7). 

In some studies, models like Cox regression have been employed to detect 

survival with competing risks, aiming to investigate the impact of each covariate 

variable on the occurrence of distinct events and to estimate the hazard function. 

The Cox model is commonly used when assessing the influence of multiple 

variables on survival time concurrently. In essence, the observed distribution of 

survival times is associated with a particular failure factor, with other causes 

being treated as censored data. In this context, the Cox model is widely utilized 

as a semi-parametric model (8,9). 

Let T be a random time and 𝑍 be a vector of covariates in R𝑝. The 

proportional hazards model assumes that conditional on 𝑍, the hazard rate 

function of T, is given by  ℎ(𝑡; 𝑍) = ℎ0(𝑡)exp(𝛽𝑇𝑍),    𝑡 ∈ R+, 

where 𝛽 ∈ R𝑝 is an indefinite regression parameter vector, and ℎ0(𝑡) is an 

indefinite baseline hazard rate function (4).  

Censorship represents an inherent element of medical and reliability studies, 

stemming from the practical challenge of acquiring comprehensive data about the 

complete lifespan of every individual. For instance, participants in a follow-up 

study might withdraw or the study might need to conclude at a predetermined 

time point. The 2 primary forms of censoring are type I and type II censoring (10-

12). The present paper primarily delves into the realm of competing risk data 

within the context of progressively type II censoring. Progressive censoring is of 

particular significance in designing duration experiments, especially in the 

domain of reliability studies. 

We employ competing risk data analysis within the framework of 

progressively type II censoring, which assumes elevated importance in shaping 

the design of duration experiments, particularly in the context of medical 

research. Both the conventional and progressive censoring structures share 

similar objectives, yet the latter is strategically designed to alleviate information 

loss by effectively managing the number of observed failures relative to the 

broader sample approach. 

Let (𝑇1, 𝑍1), … , (𝑇𝑛 , 𝑍𝑛) be 𝑛 independent of (T, 𝑍). A progressive type II 

censored sample is attained using the following method. First, suppose that we 
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are given integers 𝑟1, 𝑟2, … , 𝑟𝑚, chosen a priori, such that 𝑟1 + ⋯ + 𝑟𝑚 + 𝑚 = 𝑛. 

Consider the lifetimes 𝑇1, 𝑇2, … , 𝑇𝑛 as the failure times of 𝑛 items that are placed 

on the test at time zero. We denote by 𝑋(1) (the first failure time) and 𝑖1 (the 

number of the unit that failed). Immediately after the occurrence of the first 

failure, a certain number of items 𝑟1 labeled 𝑖2, … , 𝑖𝑟1+1 are randomly chosen and 

removed from the test. This set of removed items is denoted as 𝐼1 = [𝑖1, … , 𝑖𝑟1+1]. 

Then, at the second observed failure time  𝑋(2), the corresponding item number 

is 𝑖𝑟1+2, and a new set of 𝑟2 surviving items labeled 𝑖𝑟1+3, … , 𝑖𝑟1+𝑟2+2 is randomly 

selected and removed from the test. We then denote 𝐼2 = [𝑖𝑟1+2, … , 𝑖𝑟1+𝑟2+2]. This 

process continues until, at the time 𝑋(𝑚) of the 𝑚-the observed failure of unit 

number 𝑖𝑟1+⋯+𝑟𝑚−1+𝑚, the surviving items 𝑖𝑟1+⋯+𝑟𝑚−1+𝑚+1, … , 𝑖𝑛 are all removed 

from the experiment, and we denote 𝐼𝑚 = [𝑖𝑟1+⋯+𝑟𝑚−1+𝑚, … , 𝑖𝑛]. Note that this 

censoring structure leads to a subsample 𝑋(1) < ⋯ < 𝑋(𝑚) of the order statistics 

𝑇(1) < ⋯ < 𝑇(𝑛) obtained from 𝑇1, … , 𝑇𝑛. Note also that the sets of unit numbers 

𝐼1, … , 𝐼𝑚 satisfy  
 ∪𝑘=1

𝑚 𝐼𝑘 = [1, … , 𝑛]    𝑎𝑛𝑑    𝐼𝑘 ∩ 𝐼𝑙 = ∅    𝑓𝑜𝑟    1 ≤ 𝑘 < 𝑙 ≤ 𝑚. 
For easiness, we present the notations 𝛼1 = 1 and 𝛼𝑘 = ∑𝑘−1

𝑗=1 𝑟𝑗 + 𝑘  for  2 ≤

𝑘 ≤ 𝑚 + 1; then, we can write for 1 ≤ 𝑘 ≤ 𝑚  

 𝐼𝑘 = [𝑖𝛼𝑘
, … , 𝑖𝛼𝑘+1−1]. 

Note that the complete and type right-censored samples are single of the 

above scheme when 𝑟1 = 𝑟2 = ⋯ = 𝑟𝑚 = 0 and 𝑟1 = 𝑟2 = ⋯ = 𝑟𝑚−1 = 0, 𝑟𝑚 =
𝑛 − 𝑚, respectively. It is important to note that the order statistics that result from 

a progressive type II censoring scheme are a specific example of generalized 

order statistics, which were introduced by Kamps (13,14). 

For full instructions and more details on the review, the reader is referred to the 

book by Balakrishnan and Aggarwala (15-17) or other studies (18,19).  

It is worth noting that within this structure, the variables 𝑅1, 𝑅2, … , 𝑅𝑚 are 

predetermined. However, practical scenarios may arise where the count of items 

or individuals being dropped or excluded from a study becomes a random 

variable. Yuen and Tse mention, for instance, that the number of patients excluded 

at different stages of clinical trials is subject to random selection and cannot be 

anticipated beforehand. Similarly, in certain reliability tests, testers might opt not 

to examine specific units, deeming it unnecessary or risky even if those units 

could potentially fail. Consequently, the patterns of exclusions become 

stochastic, as all instances of exclusion are subject to randomness. 

Let's assume that each test unit failing the lifetime assessment is independent 

of other units but shares the same probability of being excluded, denoted as p. 

Following this, Xie et al indicate that the count of instances being excluded in 

each fault interval adheres to a binomial distribution (20). 

This paper aims to analyze competing risk models in the presence of 

progressively type II censored data with binomial random removals arising from 

the proportional hazards model (11,21). The Cox model is a commonly used 

statistical technique to study the relationship between a patient's survival and 

various risk factors. The purpose of the model is to simultaneously delve into the 

effects of several variables on survival (12). 

 

Methods 

The Model's Assumptions 

The paper assumes that there are 𝑞 independent causes of failure directed toward 

each unit (22-24). The model studied in the paper contains the following 

assumptions: 

1. In this study, we put 𝑛 independent and identical units on the life test. The 

test is terminated when 𝑚 ≤ 𝑛, 𝑚 is pre-specified, and units fail. 

2. The lifetime of the 𝑖-th unit is denoted by 𝑋𝑖 , 𝑖 = 1,2, … , 𝑛, and 𝑋𝑖𝑗 denotes 

the time of failure of the 𝑖-th unit by the cause 𝑗 where 𝑗 = 1,2, … , 𝑞, so 𝑋𝑖 =
𝑚𝑖𝑛[𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑞].  

   3.    

- 𝐹(. ): Cumulative Distribution Function of 𝑋𝑖,  

- 𝐹𝑗(. ): Cumulative Distribution Function of 𝑋𝑖𝑗,  

- �̅�𝑗(. ): Survival Function of 𝑋𝑖𝑗, �̅�𝑗(. ) = 1 − 𝐹𝑗(. ),  

- 𝛿𝑖: Indicator Variable Representing the Reason for Failure of the i-th Unit. 

4. The lifetime of individuals is considered as the Cox proportional hazard 

model with 𝐾 explanatory variables, that for the 𝑖-th individual, the sub-hazard 

functions for the 𝑗 = 1,2, ⋯ , 𝑞; causes are specified as  

 ℎ(𝑡, 𝐳) = ℎ0(𝑡)exp(∑ 𝛽𝑖𝑗𝑧𝑖
𝑘
𝑖=1 ) [1] 

where the ℎ0(𝑡) forms a set of baseline sub-hazards, 𝑧𝑖 denotes the vector of 

explanatory variables for the 𝑖-th individual, and 𝛽𝑗 is the associated vector of 

regression coefficients corresponding to cause 𝑗. Thus, the parameter vector (i.e., 

the vector of coefficients in the full model) is  

 𝛽 = (𝛽11, 𝛽12, … , 𝛽1𝑘 , 𝛽21, 𝛽22, … , 𝛽2𝑘 , … , 𝛽𝑞1, 𝛽𝑞2, … , 𝛽𝑞𝑘)′ 

of length 𝑘 × 𝑞, where 𝑘 represents the count of explanatory variables. Given 

that the same explanatory variable might exert distinct effects on various risks, it 

is reasonable to postulate that the 𝛽𝑗, 𝑗 = 1,2, … , 𝑞, vectors are independent of 

each other. In addition, the survival function of 𝑡ℎ𝑒 𝑖-th individual is as follows:  

 �̅�𝑗(𝑥𝑖) = [𝑆0(𝑗, 𝑥𝑖)]
exp(𝛽𝑗

′𝑧𝑖)
 [2] 

where  

 𝑆0(𝑗, 𝑥𝑖) = exp(− ∫
𝑥𝑖

0
ℎ0(𝑗, 𝑢)𝑑𝑢) 

5. When the 𝑖-th failure occurs, 𝑖 = 1,2, … , 𝑚 − 1, [1] we observe 2 values 

𝑋(𝑖) and 𝛿𝑖 ∈ [1,2, … , 𝑞], where 𝑋(𝑖) denotes the 𝑖-th order statistics out of the 𝑚 

failed items, which in turn denotes the statistics from the whole sample and [2] 

𝑅𝑖 of surviving units is randomly selected and removed, where 𝑅𝑖 follows 

binomial distribution with parameters 𝑛 − 𝑚 − ∑𝑖−1
𝑙=1 𝑅𝑙 and 𝑝.  

Finally, this experiment terminates when the 𝑚-th failure occurs, and [1] we 

observe 2 values 𝑋(𝑚) and 𝛿𝑚 ∈ [1,2, … , 𝑞] and [2] the rest 𝑅𝑚 = 𝑛 − 𝑚 −

∑𝑚−1
𝑖=1 𝑅𝑖 surviving units are all removed from the test. Here, 𝛿𝑖 = 𝑗, 𝑗 =

1,2, … , 𝑞, means the unit 𝑖 has failed at the time 𝑋(𝑖) due to cause 𝑗. The parameter 

𝑝 for binomial distribution is assumed to be the same for all removals.  

Given the assumptions outlined above, the available data are a progressively 

type II censored sample that includes the following: 

 (𝑋(1), 𝛿1, 𝑅1), (𝑋(2), 𝛿2, 𝑅2), … , (𝑋(𝑚), 𝛿𝑚, 𝑅𝑚) 

where 𝑋(1) < 𝑋(2) < ⋯ < 𝑋(𝑚) denote the 𝑚 observed failure times, 

𝛿1, 𝛿2, … , 𝛿𝑚 denote the causes of failures, and 𝑅1, 𝑅2, … , 𝑅𝑚 denote the number 

of units removed from the test at the failure time 𝑥(1) < 𝑥(2) < ⋯ < 𝑥(𝑚). 

To simplify the notation, we will use henceforth 𝑋𝑖 instead of x( 𝑥𝑖) (22, 23). 

The Likelihood Function of the Model and Estimators 

The Likelihood Function 

Using the mentioned assumptions in section 2 and conditional on 𝐼1, 𝐼2, … , 𝐼𝑚, the 

likelihood function for the type II progressively censored model under competing 

risk is as follows (10):  

 𝐿(𝛽; 𝑥, 𝛿, 𝑅) = 𝐿1(𝛽; 𝑥, 𝛿|𝑅 = 𝑟)𝑃(𝑅, 𝑝) [3] 

where  

            𝐿1(𝛽; 𝑥, 𝛿|𝑅 = 𝑟) = 𝑐 ∏𝑚
𝑘=1 ℎ(𝛿𝑖𝛼𝑘

, 𝑥𝑘 , 𝑧𝑖𝛼𝑘
) [∏𝑞

𝑗=1 [𝑆0(𝑗, 𝑥𝑘)]
∑𝑙∈𝐼𝑘

exp(𝛽𝑗
′𝑧𝑙)

] [4] 

where  𝑐 = 𝑛(𝑛 − 𝑟1 − 1) ⋯ (𝑛 − 𝑟1 − 𝑟2 − ⋯ − 𝑟𝑚−1 − 𝑚 + 1),  

 ℎ(𝛿𝑖𝛼𝑘
, 𝑥𝑘 , 𝑧𝑖𝛼𝑘

) = ℎ0(𝛿𝑖𝛼𝑘
, 𝑥𝑘)exp(𝛽𝛿𝑖𝛼𝑘

′   𝑧𝑖𝛼𝑘
). 

Assuming that a test unit extracted from the life test is independent of the 

others but with a consistent probability 𝑃, the count of units removed at each 

failure time adheres to a binomial distribution. This distribution can be 

formulated as: 

 𝑃(𝑅1 = 𝑟1) = 𝑛 − 𝑚
𝑟1

𝑝𝑟1(1 − 𝑝)𝑛−𝑚−𝑟1 

where 0 ≤ 𝑟1 ≤ 𝑛 − 𝑚, and  

𝑃(𝑅𝑖 = 𝑟𝑖|𝑅𝑖−1 = 𝑟𝑖−1, … , 𝑅1 = 𝑟1) = 𝑛 − 𝑚 − ∑

𝑖−1

𝑙=1

𝑟𝑙𝑟𝑖
𝑝𝑟𝑖(1 − 𝑝)𝑛−𝑚−∑𝑖

𝑙=1 𝑟𝑙 

where 0 ≤ 𝑟𝑖 ≤ 𝑛 − 𝑚 − ∑𝑖−1
𝑙=1 𝑟𝑙 , 𝑖 = 2, … , 𝑚 − 1. The remaining items, if there 

are some, are all removed from the test at the 𝑚-th failure with probability 1. 

Suppose further that 𝑅𝑖 is independent of 𝑋𝑖 for all 𝑖; thus, we can write:  
𝑃(𝑅, 𝑝) = 𝑃(𝑅𝑚 = 𝑟𝑚|𝑅𝑚−1 = 𝑟𝑚−1, … 𝑅1 = 𝑟1) ⋯ 𝑃(𝑅2 = 𝑟2|𝑅1 = 𝑟1)𝑃(𝑅1 = 𝑟1) 

Therefore,  

𝑃(𝑅, 𝑝) =
(𝑛−𝑚)!

∏𝑚−1
𝑖=1 𝑟𝑖!(𝑛−𝑚−∑𝑚−1

𝑖=1 𝑟𝑖)!
  𝑝∑𝑚−1

𝑖=1 𝑟𝑖   (1 − 𝑝)(𝑚−1)(𝑛−𝑚)−∑𝑚−1
𝑖=1 (𝑚−𝑖)𝑟𝑖 [5] 

substituting [4] and [5] into [3], the likelihood function takes the following form:  

𝐿(𝛽; 𝑥, 𝛿, 𝑅) = 𝑐∗ ∏𝑚
𝑘=1 ℎ(𝛿𝑖𝛼𝑘

, 𝑥𝑘 , 𝑧𝑖𝛼𝑘
) [∏𝑞

𝑗=1 [𝑆0(𝑗, 𝑥𝑘)]
∑𝑙∈𝐼𝑘

exp(𝛽𝑗
′𝑧𝑙)

]  

× 𝑝∑𝑚−1
𝑖=1 𝑟𝑖   (1 − 𝑝)(𝑚−1)(𝑛−𝑚)−∑𝑚−1

𝑖=1 (𝑚−𝑖)𝑟𝑖     [6] 

where (10)  

𝑐∗ =
(𝑛 − 𝑚)! 𝑐

∏𝑚−1
𝑖=1 𝑟𝑖! (𝑛 − 𝑚 − ∑𝑚−1

𝑖=1 𝑟𝑖)!
 

Estimators of Unknown Parameters 

Note that 𝑃(𝑅, 𝑝) does not depend on the parameters 𝛽, and hence, 

independently, the maximum likelihood estimators (MLEs) of parameter 𝑝 can 

be obtained by maximizing [5]. Thus, we find immediately  

�̂� =
∑𝑚−1

𝑖=1 𝑅𝑖

(𝑚−1)(𝑛−𝑚)−∑𝑚−1
𝑖=1 (𝑚−𝑖)𝑅𝑖+∑𝑚−1

𝑖=1 𝑅𝑖
. [7] 

In the previous section of the introduction, we mentioned that the progressive 

type II censoring scheme results in a stochastic partition in 𝐼1, … , 𝐼𝑚 of [1, … , 𝑛], 
such that 𝐶𝑎𝑟𝑑(𝐼𝑖) = 𝑟𝑖 + 1 for 1 ≤ 𝑖 ≤ 𝑚. Once the experiment is completed, 

we can observe the actual partition 𝐼1, ..., 𝐼𝑚. This observed partition reflects 

how the data points in the interval [1, ..., 𝑛] were divided based on the censoring 

scheme. Then, we can calculate the probability of observing the partition 

𝐼1, … , 𝐼𝑚 as   
 𝑝(𝐼1 = 𝐼1, … , 𝐼𝑚 = 𝐼𝑚) 

 = ∫
+∞

0
ℎ(𝛿𝑖𝛼1

, 𝑥1, 𝑧𝑖𝛼1
)𝑊1 ∫

+∞

𝑥1
ℎ(𝛿𝑖𝛼2

, 𝑥2, 𝑧𝑖𝛼2
)𝑊2 ⋯ 

 ⋯ ∫
+∞

𝑥𝑚−1
ℎ(𝛿𝑖𝛼𝑚

, 𝑥𝑚, 𝑧𝑖𝛼𝑚
)𝑊𝑚  𝑑𝑥1𝑑𝑥2 ⋯ 𝑑𝑥𝑚 

 = ∏𝑚
𝑘=1

exp(𝛽𝛿𝑖𝛼𝑘

′   𝑧𝑖𝛼𝑘
)

∑
𝑗∈𝐼𝑘

𝑚 exp(𝛽𝛿𝑖𝛼𝑘

′   𝑧𝑗)
= 𝐶(𝛽), 

here 𝐼𝑘
𝑚 = 𝐼𝑘 ∪ 𝐼𝑘+1 ∪ ⋯ ∪ 𝐼𝑚 for 1 ≤ 𝑘 ≤ 𝑚, and  

 𝑊𝑘 = ∏𝑞
𝑗=1 [𝑆0(𝑗, 𝑥𝑘)]

∑𝑙∈𝐼𝑘
exp(𝛽𝑗

′𝑧𝑙)
. 
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Therefore, it is logical to estimate the unknown regression parameter 𝛽 by 

the value of �̂� that makes the above probability of observing the partition 

𝐼1, … , 𝐼𝑚 maximal since this probability depends no longer on the unknown 

functional parameters ℎ0(𝑗, . ), 𝑗 = 1,2, … , 𝑞. Large-sample inference can be 

conducted by treating the logarithm of this probability in the usual way. Thus, we 

have  

 log𝐶(𝛽) = ∑𝑚
𝑘=1 {𝛽𝛿𝑖𝛼𝑘

′   𝑧𝑖𝛼𝑘
− log𝑑𝑘} 

where  

 𝑑𝑘 = ∑𝑗∈𝐼𝑘
𝑚 exp(𝛽𝛿𝑖𝛼𝑘

′   𝑧𝑗) 

with first and second derivatives, respectively,  

 𝑈(𝛽) =
𝜕log𝐶(𝛽)

𝜕𝛽
= ∑𝑚

𝑘=1 𝑈𝑘(𝛽), 

 𝑉(𝛽) = −
𝜕2log𝐶(𝛽)

𝜕2𝛽
= ∑𝑚

𝑘=1 𝑉𝑘(𝛽), 

where the vector 𝑈𝑘(𝛽) has 𝑙-th component, 𝑙 = 1,2, … , 𝑞,  

 

𝜕log(exp(𝛽𝛿𝑖𝛼𝑘

′   𝑧𝑖𝛼𝑘
)/𝑑𝑘)

𝜕𝛽𝑙
= {𝑧𝑖𝛼𝑘

− 𝑣𝑘0
1𝑐𝑚𝛿𝑖𝛼𝑘

= 𝑙
𝑜. 𝑤

 

and the matrix 𝑉𝑘(𝛽) has 𝑙𝑙-th entry,𝑙 = 1,2, … , 𝑞,  

 −

𝜕2log(exp(𝛽𝛿𝑖𝛼𝑘

′   𝑧𝑖𝛼𝑘
)/𝑑𝑘)

𝜕𝛽𝑙𝜕𝛽𝑙
′ = {𝑍𝑘 − 𝑣𝑘   𝑣𝑘

𝑇

0
1𝑐𝑚𝛿𝑖𝛼𝑘

= 𝑙
𝑜. 𝑤

 

where  

𝑣𝑘 = 𝑑𝑘
−1 ∑

𝑗∈𝐼𝑘
𝑚

𝑧𝑗exp(𝛽𝛿𝑖𝛼𝑘

′ 𝑧𝑗)    𝑎𝑛𝑑    𝑍𝑘 = 𝑑𝑘
−1 ∑

𝑗∈𝐼𝑘
𝑚

𝑧𝑗   𝑧𝑗
𝑇exp(𝛽𝛿𝑖𝛼𝑘

′ 𝑧𝑗) 

Under some standard regularity conditions, 𝑉−1(�̂�) provides an estimate for 

the variance-covariance matrix of �̂� and so follows hypothesis tests and 

confidence intervals for 𝛽. 

Finally, the Breslow-type estimator (24) of the baseline type-specific 

cumulative hazard function for the 𝑗-th failure type can be written as  

              �̂�0(𝑗, 𝑡) = ∑1≤𝑖≤𝑚;𝑋(𝑖)≤𝑡
1

∑
𝑙∈𝐼𝑖

𝑚 exp(�̂�𝑗
′𝑧𝑙)

,    𝑡 ≥ 0    𝑓𝑜𝑟    𝑗 = 1,2, … , 𝑞, [8] 

where (25)  

 𝐻0(𝑗, 𝑡) = ∫
𝑡

0
ℎ0(𝑗, 𝑢)𝑑𝑢. 

A Simulation Study 

In this subsection, we provide the outcomes of a simulation study conducted over 

500 replications for progressively type II censored, type II censored, and 

uncensored samples, each having a size of n = 100. We consider a scenario where 

there exist 2 independent causes of failure attributed to each unit. The covariates 

are treated as random variables, following a Bernoulli distribution with a 

parameter of 1/2. The conditional distribution of a random lifetime 𝑡, given a 

covariate Z, is characterized by the sub-hazard rate functions (𝑗, 𝑡; 𝑧) =
(𝑡/3)2exp(𝛽𝑗𝑧) for 𝑡 ≥ 0, where the regression parameters (𝛽1, 𝛽2) =

[(0.2,0.5), (0.4,1), (0.6,1.5)] have to be estimated. For each set of simulated 

samples (Table 1), we calculate the estimators of 𝛽1, 𝛽2, and the standard 

deviation of estimators (within parentheses). We consider the 3 following 

sampling schemes: 

(A) Complete data.  

(B) Type II censoring sampling plan: 𝑚 = 65. 

(C) Progressive type II censoring sampling plan: 𝑚 = 65, 𝑝 = 0.2 and 

𝑅 = (9,8,5,1,4,2,2,0,0,1,0,0,1,2,0, … ,0). 

 

Results 

Employed in a Real-World Dataset 

Consider a scenario where demographic, personal, clinical, and laboratory data 

are gathered through interviews and physical examinations conducted on a 

sample of 200 individuals participating in a study on cardiovascular disease 

(CVD). These participants, between the ages of 50 and 79, who had no CVD at 

baseline, will be followed for 10 years. To further demonstrate the use of the 

proportional hazards model in competing risks, a subset of 68 participants from 

the simulated data is used. The event of interest, denoted as " 𝑡," represents the 

period of time during which participants remain free from CVD. This time 

duration is defined in terms of years, starting from the baseline and ending at the 

earliest occurrence of either a participant being diagnosed with CVD or being 

confirmed to have passed away due to CVD-related causes. Cardiovascular 

disease, in this case, includes coronary heart disease (CHD) and stroke. 

Covariates of interest include age (AGE), sex (SEX = 1 for males and SEX = 0 

for females), smoking status (SMOKE = 1 for current smokers and SMOKE = 0 

otherwise), and body mass index ([BMI = weight] . in kilograms divided by 

height in meters squared), systolic blood pressure (SBP), logarithm of the ratio 

of urine albumin to creatinine (LACR), logarithm of triglycerides (LTG), 

hypertension status (HTN = 1 if SBP 140 mm Hg or DBP 90 mm Hg or on 

treatment hypertension and otherwise HTN = 0) and diabetes status (DM = 1 at 

fasting glucose of 126 mg/dL or on treatment for diabetes and otherwise DM = 

0). 

To evaluate the CVD outcome of interest, we use DG to denote the type of 

CVD. Specifically, DG = 0 if the CVD-free time is censored, DG = 1 if the 

participant had a stroke, DG = 2 if the participant had CHD, and DG = 3 if the 

participant had other types of CVD.  

Results for Stroke 

For stroke, SBP and hypertension status are the only significant variables. In 

contrast, gender, BMI, smoking status, body, the logarithm of urinary albumin 

and creatinine ratio, and diabetes status are significant variables for CHD and 

other CVDs. The outcomes suggest that the significant risk factors vary for 

different types of CVD events. 

Simulation Results  

Generally, in the simulated data, we can observe that the results for type II 

progressive right-censored sampling designs produce better results than results 

based on the usual type II censored sampling designs (Table 1). 

 
To fit the competing risk model, the data are generated from a progressively 

type II censored sample with m = 32, p = 0.2, and a specific censoring scheme. 

 𝑅 = (7,6,3,5,2,2,2,0,2,1,2,2,0,0,0,1,0,0,0,0,1,0, … ,0). 
Table 2 presents the outcome of applying the backward selection technique 

for fitting the proportional hazards model. 

 

 

Discussion 

This article provides a comprehensive exploration of both theoretical concepts 

and practical applications involved in survival modeling when dealing with 

competing risks within the framework of the Cox proportional hazards model, 

particularly focusing on progressive censorship with binomial distances. The 

results of a simulation study highlight the superiority of type II progressive right-

censored sampling plans over conventional type II censored sampling plans. The 

analysis revealed shifting significant risk factors across various CVD events. 

Competing risk analysis in the CoxPH model for progressive censorship with 

binomial removal has been studied by Chacko and Mohan (26). They consider 

the analysis of competing risk data under progressive type II censoring, assuming 

the number of units removed at each stage follows a binomial distribution. They 

obtain Bayes estimators assuming a Weibull distribution for the population under 

consideration. On the other hand, Lodhi et al (27) discuss a competing risks 

model using Gompertz distribution under progressive type II censoring. Singh et 

al (28) discuss the inference for the competing risks model when the failure times 

follow Chen distribution, with partially observed causes of failures considered as 

independent. They obtain maximum likelihood estimates for model parameters 

under generalized progressive hybrid censoring. Also, a study examined the 

influence of unaccounted causes of failure on inference in the Bayesian "index of 

local sensitivity to non-ignorability" within the proposed competing risks model 

(28). They concluded that the missing data mechanism should be given special 

consideration when using the suggested model in cases where the causes of 

failure are potentially missing.  

In some studies, the model parameters have been thoroughly examined and 

compared in terms of classical and Bayesian inferences, using extensive 

simulation studies to evaluate their respective performances (29). They showed 

that Bayes estimators perform better than the MLE  in terms of Mean Squared 

Error (MSE), and non-informative prior performs better than estimators based on 

informative priors. 
One aspect of the current study involved considering an independent failure 

causes model with exponential lifetimes. The removal of items or subjects at each 

failure point followed a binomial distribution. Maximum likelihood estimators 

were derived for the unknown parameters within this model, accompanied by the 

calculation of their asymptotic distributions. It was observed that varying 

binomial distances with different probabilities lead to estimations characterized 

by varying levels of precision. Future simulation studies are recommended to 

explore the impact of the parameter "p" on the accuracy of MLE estimates. 

Additionally, other studies have also explored Bayesian estimators under similar 

conditions, assuming a Weibull distribution for the underlying population (27). 

Table 1. Simulation's results 

Scheme 𝛽1, 𝛽2 = 0.2,0.5 𝛽1, 𝛽2 = 0.4,1 𝛽1, 𝛽2 = 0.6,1.5 

(A) 0.247(0.264), 0.375(0.330) 0.401(0.284), 0.741(0.358) 0.621(0.314), 1.027(0.289)  

(B) 0.138(0.321), 0.292(0.394) 0.276(0.353), 0.279(0.398) 0.695(0.348), 1.043(0.371)  

(C) 0.177(0.382), 0.301(0.344) 0.347(0.361), 0.475(0.308) 0.667(0.389), 1.032(0.356) 

 

Table 2. Results on cardiovascular disease event time data from the fitted competing risks 

model 

Variable 
Parameter 

Estimate 

Standard 

Error 

Hazards 

Ratio 

95% Confidence Interval 

of Hazard Ratio 

𝛽1𝑆𝐵𝑃 0.05978 0.02020 1.062 [1.020, 1.104] 

𝛽1𝐻𝑇𝑁 -2.52146 1.18298 0.080 [0.008, 0.816] 

𝛽2𝑆𝐸𝑋 1.50344 0.59055 4.497 [1.413, 14.309] 

𝛽2𝑆𝑀𝑂𝐾𝐸 1.27235 0.50990 3.569 [1.314, 9.696] 

𝛽2𝐵𝑀𝐼 0.08072 0.03750 1.084 [1.007, 1.167] 

𝛽2𝐿𝐴𝐶𝑅 0.32808 0.11426 6.360 [1.916, 21.116] 

𝛽2𝐷𝑀 1.85004 0.61226 6.360 [1.916, 21.116] 
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Also, a simulation study was conducted to evaluate the performance of the 

different estimators derived in these contexts (23,29). 

The present study introduces a hierarchical Bayes methodology and devises 

a Metropolis-Hastings sampling algorithm to facilitate intricate posterior 

computation. Furthermore, the efficacy of the proposed techniques is 

demonstrated through comprehensive simulation experiments and practical data 

analysis. 

 

Conclusion 

To sum up, the estimated parameters on the defined scheme setting are 

recommended. They can be used in many practical situations when competing 

risks occur, and progressive censoring could be considered. 
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