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Introduction 

The liver is a complex organ that performs many physiological functions (1), 

including the synthesis, oxidation, and transport of free fatty acids (FFA), 

triglycerides (TG), cholesterol, and bile acids (BA) and plays a key role in lipid 
homeostasis (2). These processes act through various pathways that lead to 

oxidative stress, chronic inflammation, and insulin resistance (3). The reported 

prevalence of non-alcoholic fatty liver (NAFLD) in Western countries is between 
30% and 46%. This disease has also spread in eastern countries and become one 

of the public health concerns in these regions (4). Non-alcoholic fatty liver 

includes a spectrum of liver injuries from steatosis to nonalcoholic steatohepatitis 
(NASH), which can lead to fibrosis (5). People with NAFLD are also at an 

increased risk of cardiovascular disease, type 2 diabetes, and obesity-related 

mortality. The exact mechanisms of NAFLD are still not well understood (6). The 
"multiple hit hypothesis" is currently the most recognized theory for explaining 

the development and progression of the disease. The initial shock leads to simple 

steatosis, while subsequent shocks (e.g., mitochondrial dysfunction, oxidative 

stress, adipocytokine changes, lipid peroxidation, Kupffer cell activation, etc.) 

lead to hepatic inflammation and apoptosis, finally culminating in simple 
steatosis (7).  

Recently, based on accumulated data, it has been shown that the disruption 

of endoplasmic reticulum (ER) homeostasis, or ER stress, is involved in both the 
development of steatosis and its progression to NASH (8). Endoplasmic 

reticulum is a membrane-bound organelle that provides a specialized 

environment for the production and post-translational modification of secretory 
and membrane proteins, lipid biosynthesis, and intracellular Ca2+ homeostasis 

(9). Some physiological and pathological conditions, including temperature and 

pH changes and accumulation of damaged DNA, can cause ER stress (10). 
Endoplasmic reticulum stress can be divided into three types, including the 

unfolded protein response (UPR), ER overload response, and sterol regulatory 

elements along with regulatory responses with protein mediators. Endoplasmic 
reticulum stress is commonly referred to as UPR and occurs when folded or 

unfolded proteins are accumulated in the ER, activating a stress signal that is 

transmitted through the ER membrane to the nucleus (11). Findings show that 

membrane receptors on ER recognize the onset of ER stress and initiate the UPR 

to restore normal ER function. If the stress is prolonged, or the adaptive response 

fails, apoptotic cell death occurs (12). 
As a result of ER stress, cells mainly develop two responses: one leads to 

cell survival and the other leads to apoptosis (13). Using the survival pathway, 

cells overcome such adverse effects and maintain homeostasis through the UPR, 
inhibition of mRNA transcription, increasing the folding capacity of ER, and 

activating ER-associated protein degradation (ERAD) to restore homeostasis 

(14). Under chronic or severe ER stress, the normal functions of ER are not 

recovered, resulting in cell dysfunction and apoptosis (14). Therefore, the ER is 
considered a quality control checkpoint so that only correctly folded proteins can 

exit its space and pass through the secretory pathway. Therefore, any event such 

as starvation and excessive protein synthesis, accumulation of mutant proteins, 
depletion of ER calcium, or changes in the redox state that disrupts the folding 

capacity of the ER triggers a physiological response called the UPR. These 

homeostatic responses induce the production of additional chaperones to increase 
the folding capacity of ER, enforce protein degradation in ER, slowing down the 

translation and synthesis of new proteins to reduce protein entry and thus restore 

the functional balance in the organelle and cells (15). Studies show that silencing 
the C/EBP homologous protein (CHOP) reduces apoptosis in hepatic cells in 

alcohol-induced liver disease and cholestasis-induced fibrosis (16). This protein 

can also regulate the expression of autophagy-related genes in the later stages of 
starvation and prevent the occurrence of autophagy and imminent apoptosis (17). 

However, the role of CHOP in NAFLD is debatable (18). Some studies found 

that CHOP can prevent NAFLD (19,20), and other experiments on mice showed 
that CHOP could be associated with many ER stress-related diseases (21). 

Chronic ER stress interferes with body metabolism by activating lipogenesis 

and increasing VLDL (22). Research is ongoing to provide non-pharmacological 
alternatives to reduce the risk of NAFDL. Exercise is one of the ways to replace 

drugs as a therapeutic strategy in this and other diseases. Houghton et al (23) 

Stefano et al (24) and Bacchi et al. (25) suggested that both aerobic and resistance 
exercises had similar effects on liver TG in patients with NAFLD. These studies 

show that different types of exercise help mitigate the risk of NAFLD. Also, 

interventional studies have shown that regular exercise can reverse ER disorders 
(26), and UPR activation has been reported to reduce ER stress (27,28). The UPR 

is an important pathway modulating fatty acid oxidation and lipogenesis (29). 

Furthermore, chronic fasting conditions in mice have been shown to activate the 
UPR to regulate lipid metabolism (30). Studies have shown that XBP1 regulates 

the genes involved in various cellular processes, such as ER stress response, 

secretory function, lipid metabolism, glucose homeostasis, and inflammation 
(31,32). Furthermore, XBP1 regulates the expression of the genes involved in 

fatty acid synthesis, augmenting hepatic lipogenesis (33). Several studies have 

shown that XBP1 plays an important role in adipocyte differentiation by 
regulating morphological and functional changes during adipogenesis (34). The 

importance of XBP1s in lipid biosynthesis has been demonstrated by boosting 

triglyceride (TG) biosynthesis and causing abnormal fat accumulation (35). 
Chronic starvation in mice has been shown to activate the UPR to regulate 

lipid metabolism (36). Also, studies show that exercise upregulates hepatic XBP1 
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and SREBP through ER stress signaling, thereby reducing lipid accumulation in 

NAFLD (37). The contradictions rising from human and animal experiments led 

us to investigate the effects of aerobic exercise (Running on a treadmill) and 4-
week starvation on the activity of the apoptotic pathway triggered by ER stress 

in the liver of male rats with NAFLD. 
 

Methods 

Thirty obese male Wistar rats aged 18-20 weeks with an average body weight of 

348 ± 25.53 grams, after one week of familiarization with the laboratory 
environment, were randomly divided into 6 groups of five: 1) starvation, 2) three 

days of training, 3) five days of training, 4) three days of training plus starvation, 

5) five days of training plus starvation, and 6) the control group. 
All fatty liver animal models had free access to water and standard pellet 

food (10 g of food per 100 g of mouse body weight). All maintenance and 

euthanizing procedures were carried out in the Animal Science Laboratory of 
Gorgan University of Medical Sciences. The fasting protocol was applied for one 

month (Every day and 14 hours per day in the waking cycle: 5.5 p.m. to 5.7 a.m.). 

In order to induce hunger, the rats in the starvation group were given the same 
amount of food (10 grams per 100 grams of mouse body weight). The animals 

under starvation received the same type of food over the remaining 10 hours as 

other groups.  

The entire training course included two stages: familiarization and main 

training. For this purpose, the test was conducted for 15 minutes for a week and 

exercise for 45-60 minutes on a treadmill (Either 3 or 5 days a week for 4 weeks). 
The training on the treadmill started at a 0-degree incline and a speed of 14 

meters. After the training sessions, the speed of the treadmill with zero incline 
reached 16 and 18 meters per minute (38). 

Regarding biochemical factors, HDL was measured by an enzymatic method 

and LDL and VLDL by a calorimetric method using biochemical kits 
manufactured by Darman Kav and Far Samad companies in Iran. The analyses 

were conducted on a BS480 auto analyzer. Finally, the ratios of VLDL/HDL and 

LDL/HDL were calculated.  
For molecular investigations at the level of gene expression, RNA was first 

extracted from tissues in all study groups according to the protocol of Yekta Azma 

RNA extraction kit (Cat. No: FABRK001, Lot. No: K812320822). Then we 
measured the quality and quantity of RNA with a Nanodrop device. Next, cDNA 

synthesis kit of Pars Tous Company (Mashhad, Iran, Parstous.lot: 2156, REF: 

A101161) was utilized to generate cDNA, which was then used to perform the 
reverse transcription reaction. Expression levels of XBP1 and CHOP genes were 

measured using real-time quantitative PCR using SYBER Green qPCR master 

mix (Cat. No: YT2552, Lot. P2003) using primers manufactured by Pishgam 
Biotech company. The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

gene was used as a control, and the expression level of the desired gene was 

calculated with the 2-ΔΔCT formula. First, the threshold cycle of the desired gene 
in each sample was corrected respective to the threshold cycle of the 

housekeeping gene by subtraction (ΔCt=Ct Target-Ct Housekeeping). In the next step, 

the delta Ct of each sample was subtracted from the samples to which it needed 

to be compared (ΔΔCt=ΔCt Target-ΔCt Reference). Finally, the reverse value of the 

obtained number was calculated to the power of two: Target gene/Reference gene 

ratio = 2 -ΔΔCT to obtain the relative expression of target genes. The primers used 
are shown in Table 1. The size of the genes is as follows: C/EBP homologous 

protein gene ID: DDIT3 (Length: 150 bp) and X-box binding protein 1 gene ID: 

XBP1 (Length: 601 bp). 
 

 
Tables 2 and 3 display descriptive statistics (The mean and standard deviation) 

and inferential statistics (based on one-way analysis of variance, p value, and the 

LSD follow-up test) used to present data and compare research groups, 

respectively. 

 

Results 

The results obtained (Table 2), showed the lowest mean LDL/HDL and 

VLDL/HDL ratios belonged to the 5-day training plus starvation group 

(0.28±0.61 and 0.12±0.286, respectively), indicating the better effects of 
combined training and fasting. Also, the lowest mean XBP1 gene expression 

(0.13±0.20) and the highest decrease in mean CHOP expression (0.06±0.15) were 

seen in the 5-day training plus fasting group. Genes involved in the inflammatory 
pathway promote autophagy in NAFLD patients and can be modulated by 

exercise and fasting. And also, the average values of chaperone and XBP1 genes 

are shown in Figure 1 (A, B).  
The results of one-way ANOVA (Table 3) showed a significant change in the 

ratios of LDL/HDL (P=0.00, F=23.986) and VLDL/HDL (P=0.00, F=23.986), as 

well as in the expression of CHOP (P=0.00, F=23.986) and XBP1 (P=0.00, 

F=23.986) genes. Also, the LSD follow-up test showed a significant decrease in 

the VLDL/HDL and LDL/HDL ratios in all experimental groups compared to the 

control group (P = 0.001). Also, there was a significant decrease in the expression 
of XBP1 in the 5-day training and 3- and 5-day training plus starvation groups (P 

= 0.001) but not in the starvation alone and 3-day training alone groups (P= 0.845 

and P = 0.055, respectively). The CHOP gene also showed a significant decrease 
in all groups except in the starvation alone group (P = 0.580) compared to the 

control group (P = 0.00). 

Table 1. Sequences of primers used 

Amplicon  

Size(pb) 

Number of 

nucleotides 

Primer sequence 

(5' → 3') 
Genes 

150 21 GAAAGCAGAAACCGGTCCAAT Chop-F 

- 21 GGATGAGATATAGGTGCCCCC Chop-R 

601 24 AAACAGAGTAGCAGCGCAGACTGC XBP1-F 

- 26 GGATCTCTAAAACTAGAGGCTTGGTG XBP1-R 

- 22 CACTGAGCATCTCCCTC ACAA GAPDH-F 

- 22 TGGTATTCGAGAGA AGGGAGG GAPDH-R 

 

 

Table 2. Mean and standard deviation of variables studied in fatty liver rat models 

Mean and standard deviation   
Starvation 

group + 5 Days of training 

Starvation 

group + 3 Days of training 
5 Days training group 3 Days training group Starvation group Control group 

VLDL/HDL 0.12±0.286 0.72±0.31 0.69±0.21 0.94±0.70 0.73±0.21 2.43±0.43 

LDL/HDL 0.61±0.28 1.23±0.32 1.03±0.24 1.17±0.69 1.79±0.32 3.69±0.81 

CHOP 0.13±0.20 0.22±0.22 0.30±0.23 0.55±0.38 1.08±0.15 1.00±0.00 

XBP1 0.06±0.15 0.22±019 0.35±0.31 0.77±0.21 0.97±0.43 1.00±0.00 

 

 
 

 

 

 
Figure 1: Average graph of CHOP and XBP1 genes 

A 
B 
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Discussion 

The aim of this study was to investigate the effects of aerobic exercise (Running 

on a treadmill) and starvation for 4 weeks on the regulation of the apoptotic 

pathway triggered by ER stress in the hepatocytes of male Wistar NAFLD rats. 
Regarding XBP1 expression, the highest average was observed in the starvation 

group, and the lowest average was observed in the starvation + 5 days of training 

group. The results showed that four weeks of aerobic exercise along with 
starvation reduced the expression of both XBP1 and CHOP genes, which are 

involved in the development of NAFLD. The control and starvation groups had 

the highest average expression of these genes, and exercise decreased their 
expression levels. Research shows that exercise controls the transcription of 

XBP1 in the liver (35,36). Various mechanisms can be involved in this regulatory 

process. Previous studies indicate that the goal of the UPR is to restore the 
homeostasis and normal function of ER by adaptive mechanisms to upregulate 

the genes involved in increasing the capacity of ER to degrade proteins (35). 

When the primary stimuli that cause UPR are long or excessive, UPR-related 
adaptive mechanisms fail, leading to apoptotic cell death (37). 

It has been reported that starvation causes a decrease in nutrients inside the 

cell and is recognized by brain material-sensing signaling pathways such as 
mTOR and AMPK pathways, which ultimately stimulate autophagy (39). In 

addition, p-eiF2α selectively promotes the translation of a number of mRNAs, 

including ATF4 and IRE1. The activation of IRE1 triggers the modification of 
XBP1 and subsequent transcription of molecular chaperones and genes involved 

in ERAD (40). Finally, activated ATF6 undergoes proteolytic cleavage in the 

Golgi, allowing its mature form to enter the nucleus and induce ER stress-related 
genes such as ER chaperones and foldases (41). Research findings show that 

starvation activates the IRE1α-XBP1 route (42), and the combination of fasting, 

acute resistance training, and protein consumption (Immediately or 1 hour after 
exercise) increases the serum levels of leucine, insulin, and glucose, as well as 

the levels of autophagic proteins in skeletal muscles (43,44) but reduces proteins 

related to the autophagic pathway in the liver (45). It has also been shown that 6 
weeks of wheel running suppressed XBP1s mRNA in HFD-fed mice, and similar 

results were reported in mice after 6 weeks of treadmill training (45). In addition, 

swimming exercise decreased IRE-1α and XBP1 protein levels and hepatic TG 
content in rats with NAFLD (46). Lu et al. showed that exercise decreased 

SREBP-1 induced fat accumulation in the liver through the AMPK pathway and 

the inhibition of the mammalian target of rapamycin complex 1, which finally 
relieved ERS (46). Moreover, exercise reduced hepatic lipogenesis via the 

PERK/ATF4/SREBP pathway (47). These studies suggest that exercise regulates 
hepatic XBP1 and SREBPs through ER stress signaling and thus reduces fat 

accumulation in the liver of NAFLD. Exercise also reduces excessive aberrant 

phosphorylation in the ER, promoting apoptosis and cell death. Also, endurance 
activity such as swimming, due to the compatibility between transmembrane 

proteins, alleviates the amount of misfolded or over folded proteins, as the source 

of stress, in the ER. As a result, stress subsides in the ER.  
The results of some studies are not consistent with our findings in the present 

study. In a study, short-term sports activity such as a one-day sprint or a five-day 

activity for a week had no effects on the expression of XBP1, ATF6, and PERK 
proteins, which could be probably due to the short duration (Less than a week) 

of the sports activity (43,45). It has been suggested that in order to induce the 

expression of ER-related proteins, the minimum time of sports training should be 
four weeks (48). It has also been reported that rats with a history of sports activity 

had less stress symptoms and the expression of UPR-related proteins (XBP1, 

ATF6) and CHOP gene after resistance training than rats that did not have any 
sports activity, suggesting that sports activity has a positive effect on reducing 

stress symptoms (49). Overall, sports activity can be considered a therapeutic 

strategy to mitigate liver diseases, including NAFLD. The results of the present 
study showed that NAFLD was associated with the overexpression of XBP1 and 

CHOP genes, and this increase was significant in the exercise alone and exercise 

+ starvation groups compared to the control group. This can somehow confirm 
that ER stress is one of the main causes of cell apoptosis in the liver. According 

to the statistical results of our research, a significant decrease was observed in the 

ratio of lipoproteins (VLDL/HDL, LDL/HDL) in all experimental groups 
compared to the control group. In recent years, several clinical trials have shown 

that starvation is an effective way to reduce fat and regulate lipid profile. 

Starvation or energy-restricted diets have favorable effects on body weight, total 
fat mass, and liver fat reduction. In addition, intermittent fasting can improve the 

biomarkers of systemic inflammation and appetite-regulating hormones (50). A 

recent finding suggested that exercise was superior to a calorie restriction 
program in reducing cholesterol biosynthesis. Short-term exercise combined with 

dietary interventions had a great effect on reducing metabolic risks and fasting 

insulin levels (50). In a study by Askari et al. in 2012, 8 weeks of aerobic exercise 
reduced the percentage of subcutaneous fat, total cholesterol, RF, and plasma 

low-density lipoproteins in non-athletic women (51). Also, in another study by 
Dadban et al. in 2021, it was shown that 4 weeks of regular aerobic exercise 

reduced liver lipase activity and thus triglyceride production (VLD L-C and 

LDL-C). Elevated LDL-C is an independent risk factor for coronary artery 
disease, while the reduction of LDL-C to 60 mg/dL mitigated the risk of coronary 

heart disease by 50% within two years. HDL-C transports cholesterol from 

peripheral tissues to the liver and then directs excess cholesterol to the bile for 
excretion (52). Our results are consistent with the findings of the aforementioned 

studies.  

In summary, understanding the effects of diet on disease severity is one of 

the most complex aspects in the management of patients with NAFLD. As a 

result, evaluating the effects of dietary interventions is challenging because they 

affect the entire metabolism, making it difficult to isolate specific (Beneficial) 
effects on the liver. However, a low-calorie low-carbohydrate diet combined with 

continuous aerobic exercise with repetitions of at least 3 days and up to 5 days 

could potentially be suitable for the successful "treatment" of NAFLD. 

 

Conclusion 

Impaired autophagy may be a critical pathogenic mechanism in NAFLD, 

highlighting the role of exercise and starvation as important tools in the 

prevention of this condition. The findings of the present research revealed that 
the breakdown of lipids in the liver moderated the disease due to an increase in 

the non-selective autophagy of hepatocytes through endoplasmic reticulum. 

Running exercise with starvation causes NAFLD rats to activate CHOP and 
XBP1 genes, leading to apoptosis, obviation of ER stress, and removal of stressed 

cells. So, this method can be used as a safe and healthy intervention for the 

treatment of liver diseases such as NASH and NAFLD. 
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Table 3. One-way analysis of variance results for comparing the means of study variables between groups 

Variables Sources of change Sum of squares Mean square df f p 

LDL/HDL (Mg/dL) 

Intergroup 140.084 60.39 5 

23.986 0.000 Within-group 6.403 0.252 24 

Total sum 36.240 - 29 

VLDL/HDL (Mg/dL) 

Intergroup 14.084 2.817 5 

19.269 0.000 Within-group 3.509 0.146 24 

Total sum 17.593 - 29 

CHOP (Ng/mol) 

Intergroup 4.103 0.821 5 

15.340 0.000 Within-group 1.284 0.053 24 

Total sum 5.386 - 29 

XBP1 (Ng/mol) 

Intergroup 4.063 0.813 5 

26.290 0.000 Within-group 0.742 0.031 24 

Total sum 4.805 60.39 29 
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