1. Abreu R, Semedo-Lemsaddek T, Cunha E, Tavares L, Oliveira M. Antimicrobial drug resistance in poultry production: Current status and innovative strategies for bacterial control. Microorganisms. 2023; 11: 953. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
2. Leroy F, Smith NW, Adesogan AT, Beal T, Iannotti L, Moughan PJ, et al. The role of meat in the human diet: evolutionary aspects and nutritional value. Anim Front Rev Mag Anim Agric. 2023; 13: 11-8. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
3. Antunes P, Novais C, Peixe L. Food-to-Humans Bacterial Transmission. Microbiol Spectr. 2020; 8(1): 10.1128. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
4. Kumar SB, Arnipalli SR, Ziouzenkova O. Antibiotics in Food Chain: The Consequences for Antibiotic Resistance. Antibiot (Basel, Switzerland). 2020; 9(10): 688. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
5. Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules. 2018; 23(4): 795. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
6. Mancuso G, De Gaetano S, Midiri A, Zummo S, Biondo C. The Challenge of Overcoming Antibiotic Resistance in Carbapenem-Resistant Gram-Negative Bacteria: "Attack on Titan". Microorganisms. 2023; 11(8): 1912. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
7. Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. Antimicrobial resistance: a growing serious threat for global public health. In: Healthcare. MDPI. 2023; 1946. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
8. Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathog (Basel, Switzerland). 2021; 10. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
9. Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel). 2023; 16(11): 1615. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
10. Sawa T, Kooguchi K, Moriyama K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J Intensive Care. 2020; 8: 13. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
11. Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathog (Basel, Switzerland). 2021; 10(3): 373. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
12. Sheu C-C, Chang Y-T, Lin S-Y, Chen Y-H, Hsueh P-R. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Front Microbiol. 2019; 10: 80. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
13. Hasannejad-Bibalan M, Sadeghi M, Hemmati H, Ashoobi MT, Yaghoubi T, Samadnia A, et al. A two-year study of microbiological characteristics of intravascular catheter-related bloodstream infections at Razi hospital, Iran. New Zeal J Med Lab Sci. 2021; 75: 202-5. [
View at Publisher] [
Google Scholar]
14. Hosseini M, Hasannejad-Bibalan M, Yaghoubi T, Mobayen M, Khoshdoz P, Khoshdoz S, et al. Prevalence and Antibiotic Resistance Pattern of Gram-Positive Isolates from Burn Patients in Velayat Burn Center in Rasht, North of Iran. Med Lab J. 2021; 15: 52-7. [
View at Publisher] [
DOI] [
Google Scholar]
15. Saleh A, Göttig S, Hamprecht AG. Multiplex Immunochromatographic Detection of OXA-48, KPC, and NDM Carbapenemases: Impact of Inoculum, Antibiotics, and Agar. J Clin Microbiol. 2018; 56(5): e00050-18. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
16. Pitout JDD, Peirano G, Kock MM, Strydom KA, Matsumura Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin Microbiol Rev. 2019; 33(1): e00102-19. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
17. Heredia N, García S. Animals as sources of food-borne pathogens: A review. Anim Nutr (Zhongguo xu mu shou yi xue hui). 2018; 4: 250-5. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
18. Bintsis T. Foodborne pathogens. AIMS Microbiol. 2017; 3: 529-63. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
19. Li X, Gu N, Huang TY, Zhong F, Peng G. Pseudomonas aeruginosa: A typical biofilm forming pathogen and an emerging but underestimated pathogen in food processing. Front Microbiol. 2022; 13: 1114199. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
20. Elbehiry A, Marzouk E, Moussa IM, Dawoud TM, Mubarak AS, Al-Sarar D, et al. Acinetobacter baumannii as a community foodborne pathogen: Peptide mass fingerprinting analysis, genotypic of biofilm formation and phenotypic pattern of antimicrobial resistance. Saudi J Biol Sci. 2021; 28: 1158-66. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
21. Ali S, Alsayeqh AF. Review of major meat-borne zoonotic bacterial pathogens. Front public Heal. 2022; 10: 1045599. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
22. Rai S, Dash D, Agarwal N. Introducing the new face of CLSI M100 in 2023: An explanatory review. Indian J Med Microbiol. 2023; 46: 100432. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
23. Ghiaei A, Ghasemi SM, Shokri D. Investigating the antagonistic effect of indigenous probiotics on carbapenem-resistant Pseudomonas aeruginosa strains. Biomed Res Int. 2023; 2023. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
24. García-Alegría AM, Anduro-Corona I, Pérez-Martínez CJ, Guadalupe Corella-Madueño MA, Rascón-Durán ML, Astiazaran-Garcia H. Quantification of DNA through the NanoDrop Spectrophotometer: Methodological Validation Using Standard Reference Material and Sprague Dawley Rat and Human DNA. Int J Anal Chem. 2020; 2020: 8896738. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
25. Shoja S, Ansari M, Faridi F, Azad M, Davoodian P, Javadpour S, et al. Identification of carbapenem-resistant Klebsiella pneumoniae with emphasis on New Delhi metallo-beta-lactamase-1 (bla NDM-1) in Bandar Abbas, South of Iran. Microb Drug Resist. 2018; 24: 447-54. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
26. Ziraldo R, Shoura MJ, Fire AZ, Levene SD. Deconvolution of nucleic-acid length distributions: a gel electrophoresis analysis tool and applications. Nucleic Acids Res. 2019; 47: e92. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
27. Caliskan-Aydogan O, Alocilja EC. A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques. Microorganisms. 2023;11. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
28. Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA, et al. Carbapenemase-Producing Organisms: A Global Scourge. Clin Infect Dis an Off Publ Infect Dis Soc Am. 2018; 66: 1290-7. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
29. Dehkordi FS, Yahaghi E, Darian EK. Prevalence of antibiotic resistance in Escherichia coli isolated from poultry meat supply in Isfahan. Iran J Med Microbiol. 2014; 8(2): 41-47 [
View at Publisher] [
Google Scholar]
30. Nazari Moghadam M, Rahimi E, Shakerian A, Momtaz H. Prevalence of Salmonella Typhimurium and Salmonella Enteritidis isolated from poultry meat: virulence and antimicrobial-resistant genes. BMC Microbiol. 2023; 23: 168. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
31. Moussé W, Noumavo PA, Chabi NW, Sina H, Tohoyessou MG, Ahoyo TA, et al. Phenotypic and genotypic characterization of extended spectrum β-Lactamase Klebsiella pneumoniae and fluorescent Pseudomonas spp. strains from market garden products and their watering water in Benin (West Africa). Food Nutr Sci. 2016; 7: 192-204. [
View at Publisher] [
DOI] [
Google Scholar]
32. Atabay Z, Peighambari SM, Madani SA, Yazdani A. Bacteriologic survey of hepatic and cardiac lesions in commercial poultry carcasses. Iranian Veterinary Journal; 2023; 18(4): 5-14.
DOR: 20.1001.1.17356873.1401.18.4.1.5 [
View at Publisher] [
DOI] [
Google Scholar]
33. Rafei R, Hamze M, Pailhoriès H, Eveillard M, Marsollier L, Joly-Guillou M-L, et al. Extrahuman epidemiology of Acinetobacter baumannii in Lebanon. Appl Environ Microbiol. 2015; 81: 2359-67. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
34. Roth N, Käsbohrer A, Mayrhofer S, Zitz U, Hofacre C, Domig KJ. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult Sci. 2019; 98: 1791-804. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
35. Odey TOJ, Tanimowo WO, Afolabi KO, Jahid IK, Reuben RC. Antimicrobial use and resistance in food animal production: food safety and associated concerns in Sub-Saharan Africa. Int Microbiol. 2024; 27: 1-23. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
36. Rezaloo M, Motalebi A, Mashak Z, Anvar A. Prevalence, antimicrobial resistance, and molecular description of Pseudomonas aeruginosa isolated from meat and meat products. J Food Qual. 2022; 2022: 1-11. [
View at Publisher] [
DOI] [
Google Scholar]
37. Davis GS, Waits K, Nordstrom L, Weaver B, Aziz M, Gauld L, et al. Intermingled Klebsiella pneumoniae Populations Between Retail Meats and Human Urinary Tract Infections. Clin Infect Dis. 2015; 61: 892-9. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
38. Rahman MM, Husna A, Elshabrawy HA, Alam J, Runa NY, Badruzzaman ATM, et al. Isolation and molecular characterization of multidrug-resistant Escherichia coli from chicken meat. Sci Rep. 2020; 10: 21999. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
39. Yang X, Wu Q, Zhang J, Huang J, Chen L, Wu S, et al. Prevalence, Bacterial Load, and Antimicrobial Resistance of Salmonella Serovars Isolated From Retail Meat and Meat Products in China. Front Microbiol. 2019; 10: 2121. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
40. Kousar S, Rehman N, Javed A, Hussain A, Naeem M, Masood S, et al. Intensive Poultry Farming Practices Influence Antibiotic Resistance Profiles in Pseudomonas aeruginosa Inhabiting Nearby Soils. Infect Drug Resist. 2021; 14: 4511-6. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
41. Mtonga S, Nyirenda SS, Mulemba SS, Ziba MW, Muuka GM, Fandamu P. Epidemiology and antimicrobial resistance of pathogenic E. coli in chickens from selected poultry farms in Zambia. J Zoonotic Dis. 2021; 5: 18-28. [
View at Publisher] [
Google Scholar]
42. Alhazmi W, Al-Jabri A, Al-Zahrani I. The Molecular Characterization of Nosocomial Carbapenem-Resistant Klebsiella pneumoniae Co-Harboring bla NDM and bla OXA-48 in Jeddah. Microbiol Res (Pavia). 2022; 13: 753-64. [
View at Publisher] [
DOI] [
Google Scholar]
43. Bakhtiari R, Javadi A, Aminzadeh M, Molaee-Aghaee E, Shaffaghat Z. Association between Presence of RmpA, MrkA and MrkD Genes and Antibiotic Resistance in Clinical Klebsiella pneumoniae Isolates from Hospitals in Tehran, Iran. Iran J Public Health. 2021; 50: 1009-16. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
44. Amin M, Navidifar T, Saleh Shooshtari F, Goodarzi H. Association of the genes encoding metallo-β-lactamase with the presence of integrons among multidrug-resistant clinical isolates of Acinetobacter baumannii. Infect Drug Resist. 2019; 12: 1171-1180. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
45. Li S, Duan X, Peng Y, Rui Y. Molecular characteristics of carbapenem-resistant Acinetobacter spp. from clinical infection samples and fecal survey samples in Southern China. BMC Infect Dis. 2019; 19: 1-12. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
46. Kanaan MHG, Khalil ZK, Khashan HT, Ghasemian A. Occurrence of virulence factors and carbapenemase genes in Salmonella enterica serovar Enteritidis isolated from chicken meat and egg samples in Iraq. BMC Microbiol. 2022; 22: 279. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
47. Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 2018; 42(1): fux053 [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
48. Canteón R. Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin Microbiol Infect. 2009; 15: 20-5. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]